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Brief Papers

A Hybrid ART-GRNN Online Learning Neural Network
With a -Insensitive Loss Function

Keem Siah Yap, Chee Peng Lim, and Izham Zainal Abidin

Abstract—In this brief, a new neural network model called generalized
adaptive resonance theory (GART) is introduced. GART is a hybrid model
that comprises a modified Gaussian adaptive resonance theory (MGA) and
the generalized regression neural network (GRNN). It is an enhanced ver-
sion of the GRNN, which preserves the online learning properties of adap-
tive resonance theory (ART). A series of empirical studies to assess the ef-
fectiveness of GART in classification, regression, and time series prediction
tasks is conducted. The results demonstrate that GART is able to produce
good performances as compared with those of other methods, including
the online sequential extreme learning machine (OSELM) and sequential
learning radial basis function (RBF) neural network models.

Index Terms—Adaptive resonance theory (ART), Bayesian theorem,
generalized regression neural network (GRNN), online sequential extreme
learning machine.

I. INTRODUCTION

Over the past two decades, many different neural network models
have been developed for pattern recognition. In general, both multi-
layer perceptron (MLP) [1], [2] and radial basis function (RBF) [1],
[3] networks have shown good results in a variety of pattern recognition
problems. The MLP network tackles the pattern recognition problem
by constructing a nonlinear transformation of combined sigmoid func-
tions of its hidden neurons. On the other hand, the RBF network tackles
the problem by combining nonlinear semiparametric functions such as
the Gaussian kernel function. However, the number of hidden neurons
of MLP and the number of kernel functions of RBF have to be predeter-
mined by a series of cross-validation sequences, or by trial-and-error,
which could be time consuming. Apart from that, the training process
is time consuming because the training data set has to be presented to
the networks repeatedly during the training phase.

A search in the literature reveals that sequential learning models
based on RBF have become a popular research area for pattern
recognition. These include the resource allocation network (RAN)
[4] and its extensions, i.e., resource allocation network with extended
Kalman filter (RANEKF) [5], minimum resource allocation network
(MRAN) [6], growing and pruning RBF (GAPRBF) [7], and gen-
eralized growing and pruning RBF (GGAPRBF) [8]. Recently, an
online learning model known as the online sequential extreme learning
machine (OSELM) is proposed [9]. OSELM is developed based
on a batch-mode version of ELM [10]. It uses the sequential least
squares method to minimize the error function. OSELM works with
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both additive-sigmoid and RBF hidden neurons. For additive-sigmoid
hidden neurons, the input weights and biases are randomly generated
(and remain unchanged during the training phase), and the output
weights are analytically determined. Similarly, for OSELM with
RBF hidden neurons, the centers and widths of the RBF functions
(input weights) are randomly generated, and the output weights are
analytically determined.

In this brief, a hybrid online learning neural network called the gener-
alized adaptive resonance theory (GART) model is proposed. This hy-
brid network first uses a modified Gaussian adaptive resonance theory
(GA) model [11] to perform unsupervised clustering by compressing
the training samples into several categories. It then employs an en-
hanced generalized regression neural network (GRNN) [12] to con-
struct the decision function for prediction. This hybrid network is able
to handle both classification and regression problems with an online
learning capability. The motivations behind the development of GART
are as follows:

1) to embed the decision function of the GRNN into the modified
GA (MGA) model;

2) to reduce the number of kernels in the GRNN by compressing the
training samples using MGA;

3) to perform “online learning” right from the first sample. Here,
online learning is defined as follows:

a) at any time of the training cycle, only the newly arrived
sample is needed, instead of all past samples [9], for learning;

b) ability to conduct one-pass learning through all training sam-
ples, with no reiteration through the training set;

c) ability to conduct incremental and online learning of new
knowledge without the disturbing the existing knowledge
base;

d) ability to predict the target output for a given (unlabeled)
input sample at any time during the training cycle.

This brief is organized as follows. Section II describes the learning
algorithm of GART. Section III presents a total of nine experimental
studies and comparison of results for GART, OSELM, and other
methods. A summary of this brief, with suggestions for further work,
is presented in Section IV.

II. GART LEARNING ALGORITHM

The GRNN is a memory-based supervised learning neural network
proposed by Specht [12]. It is able to provide an estimate of contin-
uous variables and to converge to the underlying linear and/or non-
linear regression surface. The GRNN learning process is instantaneous
as it is able to perform “one-pass” learning through the training sam-
ples. All neurons in the GRNN are treated equally as kernels, and are
use to compute the independent probability density function (pdf), re-
spectively, given a new input sample. If there is a new input sample
that needs to be learned, the GRNN creates a new neuron to memorize
the new sample. Generalization is achieved by using an estimator that
comprises combinatory pdfs, in accordance with the Parzen-window
probability density estimation method [13].

On the other hand, the unsupervised Gaussian ART (GA) [11] model
assumes a learning algorithm based on a hybrid Gaussian classifier and
ART [14], [15]. The learning objective of GA is to compress a new
training sample into one of the existing categories, based on the pdf
and Bayesian theorem. If all existing categories fail to accommodate
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the new sample, a new category is created to represent the sample. A su-
pervised GA model, i.e., Gaussian ARTMAP (GAM) [11], is also pro-
posed for pattern classification. However, both GA and GAM cannot
handle regression problems.

By exploiting the advantages of GA and the GRNN, in this brief, we
propose a GART model. During the training phase, two MGA mod-
ules are created, i.e., MGA-a and MGA-b. MGA-a is used to identify
the centers and standard deviations of the input samples while MGA-b
is used to form the desired outputs (kernel labels) and its standard de-
viations. During the prediction phase, an enhanced GRNN is used to
predict the output given a new input sample.

Similar to GA and the GRNN, GART is capable of performing on-
line learning by adjusting its weights (centers and standard deviations
of a kernel and its label) or by creating a new kernel and its label. These
processes are fast and with a low computational cost. Note that, in this
brief, GART is an improved version of the hybrid model presented in
[16] and [17]. While the standard quadratic loss function is used in
[16] and [17], a �-insensitive loss function (which becomes the Lapla-
cian loss function when � � �) is adopted in GART. Instead of the
Gaussian function in [16] and [17], GART uses the exponential kernel
function for formulating the choice and match functions of ART. The
learning equation of the standard deviation of kernels is based on Lapla-
cian distribution, rather than Gaussian distribution as in [16] and [17].
Furthermore, there is no match tracking mechanism in GART. Other
improvements in this work, as compared with [16] and [17], include
extensive empirical studies on classification, regression, and time se-
ries prediction problems; statistical quantification of the results by the
bootstrap technique; and performance comparison with other sequen-
tial learning models.

In general, the dynamics of GART are as follows.

A. Training

The training samples presented to MGA-a and MGA-b are
��������� �������� � � � � ������� � � ��, where �� � ���� and
�� � ���� are the input vector and kernel label of �th training sample,
respectively. Note that in the following discussion, the equations and
variables are based on MGA-a with input sample �� . Equations and
variables of MGA-b with input kernel label �� are the same but with
subscript “b” instead of “a.”

B. Competition

The input sample is presented to MGA-a, with its kernel label to
MGA-b, for computing the choice and match functions. The choice
and match functions are defined based on the Bayesian theorem.
The Bayesian posterior probability for category-� of MGA-a to input
sample �� is

� ������ �
� ������� ���

� ����
� (1)

The prior probability is

� ��� �
���
�

���

���

(2)

where 	 is the total number of output classes and �� is the number of
samples of category-
. The pdf is

� ���� �

�

���

� ����
�� �
� (3)

where � ������ is a kernel function in the exponential form [18], [19]
that is used to measure the similarity between�� and category-�, and
is defined as

� ������ � ��� �
	



������� (4)

where ���� is the loss function.
While the original GA model uses a standard quadratic loss function,

a � -insensitive loss function is used in GART, as follows:

������� �
�� ���� � ��

���� � ��� otherwise
(5)

where �� 	 � is a predefined parameter, and

�
�
�� �

�

���

��� ����

����
(6)

with �� � ���
�
� , and ��� , respectively, the center, standard deviation, and

count of category-�. The �-insensitive loss function is used because
the quadratic loss function can be influenced by outliers especially in
the case of noisy data, which may lead to inaccurate recognition. In
addition, the �-insensitive loss function incurs no penalty to small noise
values in the training samples [18].

The choice and match functions of MGA-a are defined by (1) and (4),
respectively. The winning category of MGA-a, denoted as category-� ,
is the one with the highest choice function, with the condition that both
match functions of MGA-a and MGA-b are larger than or equal to their
respective vigilance parameters, i.e.,

� � �����
�

�� ������� (7)

subject to � ������ 	 �� and � ������ 	 ��, where �� and �� are
predefined vigilance parameters of MGA-a and MGA-b between 0 and
1. For simplicity, �� is set to 1 for classification problems, and to the
same value as �� for regression problems. Note that the procedure used
to select a winner in MGA-a is simpler as compared with that of original
GAM, e.g., the match tracking mechanism is omitted. Besides, � ����
does not affect the selection of the winner as it is the same for all cate-
gories.

C. Learning

Learning involves the adjustment of the center, standard deviation,
and counts of MGA-a with the following:

�
�
� 
 �

�
� � 	


�
� 
 	�

	

���

�
� �

��

���
and

���
�
� 
 	�

	

���
���
�
� �

�� ���

���
� (8)

These equations are different from those in [11], as a different type of
loss function is used in GART.

D. Addition of New Category

If none of the existing categories is able to satisfy (7), a new category
is created to represent the new sample, i.e.,

	 
 	 � 	 �
�
� � 	 

�
� � �� and ���

�
� � �� (9)

where �� is a predefined initial standard deviation value. During the
prediction process, an unlabeled sample � is presented to MGA-a, and
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Fig. 1. Pseudocode for the training and recognition of GART.

TABLE I
SETTING OF THE PARAMETERS FOR ALL EXPERIMENTS

the prediction of GART is obtained by a distributed posterior proba-
bility estimate (similar to the GRNN), as follows:

���� �

�

���

���

���
� �����

�

���

�

���
� �����

� (10)

In summary, Fig. 1 shows the pseudocode of the training and recogni-
tion phases of GART.

III. EXPERIMENTS AND RESULTS

The performances of GART are evaluated using nine empirical
experiments. The experiments in Sections III-A and III-B are based
on those in [7] and [11], respectively, while the experiments in
Section III-C are based on those in [9]. Unless otherwise stated, the
training parameters of MGA-a and MGA-b were set to their “default”
values, as in Table I, for all experiments. For each problem, 50 runs
were performed using GART (and OSELM), after tuning the two most
parameters of GART (�� and ��). The statistical significance of the
GART results was further evaluated by using the bootstrap technique
[20], [21] with 1000 resamplings.

TABLE II
TRAINING PARAMETERS, NUMBER OF CATEGORIES AND BOOTSTRAPPED

MEAN, AND 95% CONFIDENCE LIMIT OF GART

Table II shows the values of �� and ��, the number of categories,
and the results [percentage of accuracy for classification problems; the
smallest root mean square error (RMSE) for regression and time series
prediction problems] along with their 95% confidence intervals (esti-
mated by the bootstrap technique). The �� and �� values were identi-
fied based on the minimum error found from several trials. Experiment
A showed how parameter selection was conducted.

In Experiments A and B, the model selection and data normalization
procedures of OSELM were the same as in [9].1 Although OSELM
could accept a chunk of training samples for online learning, the ex-
periments were focused on the online learning mode where the input
samples were received one by one (as explained in Section I).

A. Two Noisy Intertwined Spirals (Spr)

This is a synthetic benchmark problem designed for noisy data clas-
sification. The training samples were created based on the procedure

1Note that the program code of OSELM was obtained from http://www.ntu.
edu.sg/home/egbhuang/.
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Fig. 2. Evolution of the classification results: Note that (a)–(c) are the results of original GAM (adapted from [11]), (d)–(f) are the results of GRNNFA (adapted
from [22]); (g)–(i) are the results of OSELM (RBF); and (j)–(m) are the results of GART. (a) 100 samples; (b) 1000 samples; (c) 10 000 samples; (d) 100 samples;
(e) 1000 samples; (f) 10 000 samples; (g) 100 samples; (h) 1000 samples; (i) 10 000 samples; (j) 100 samples; (k) 1000 samples; and (m) 10 000 samples.

TABLE III
PERCENTAGE OF ACCURACY AND NUMBER OF CATEGORIES (IN PARENTHESIS)

BASED ON DIFFERENT VALUES OF � AND � FOR EXPERIMENT A.
NOTE THAT � � �� � � � , AND � � � � �

in [11]. The samples were generated from two intertwined spirals in
2-D unit square. Each spiral consisted of 97 isotropic Gaussian distri-
butions, with standard deviation of 0.025, centered along the spiral.

Fig. 2 shows the graphical results of 100, 1000, and 10 000 training
samples. For comparison purposes, the results of GAM [11] and
GRNNFA [22] are included. Both GART and GRNNFA achieved
similar results, which are comparatively better than those of GAM and
OSELM. GRNNFA used a two-stage training strategy. Fuzzy ART
[14] was first used to identify the centers of prototypes. Then, the
gradient descent method was used to optimize the width of the kernels
(standard deviations). Since the training process (by gradient descent)
was repeated for 2000 times [22], it did not fulfill the condition of
online learning (as in Section I).

A further experiment was conducted with OSLEM-RBF [9]. After
several trials with different random weights, number of hidden neurons,
and number of initial training samples, the best result of OSELM-RBF
was 84.09%, which was produced using 200 hidden neurons and 4000

TABLE IV
PERCENTAGE OF ACCURACY AND NUMBER OF CATEGORIES (IN PARENTHESIS)

BASED ON DIFFERENT VALUES OF � FOR EXPERIMENT A. NOTE THAT

� � ��� AND � � ����� � � �� � � � , AND � � �

initial training samples. However, this is still relatively lower than the
best result of GART (96.16%).

The trial-and-error method is commonly used for parameters selec-
tion and tuning of many ART-based models e.g., [11], [15], and [23] as
well as other learning systems, e.g., [24]. The parameter set that pro-
duces the smallest error rate is then used for evaluating the performance
using the test set. The same strategy is adopted in this study. To min-
imize the number of categories created and the category proliferation
problem [11], [14], [15], [25], [29], the vigilance parameter �� should
not be a large value. As suggested in [11], a large value of �� would
lead to slower training with fewer categories (but would require the
training samples to be presented repeatedly). Hence, �� and �� were
set to small values to minimize the number of categories created as well
as to perform rapid learning. Table III shows the results (averages of 50
runs) for different �� and �� settings. As �� � ��� and �� � ���� pro-
duced the best result, this setting was selected for further experiments
to identify parameter �� (note that when �� and �� were tuned, �� was
set to 0).

Parameter �� can be considered as an optional user-defined threshold
to regulate the network complexity. It is useful especially when the
data sets are noisy. Table IV shows the results (averages of 50 runs) for
different values of ��. When �� is larger, the network size is expected to
be smaller and classification accuracy to be lower. As can be seen, �� �
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TABLE V
PERFORMANCE COMPARISON OF EXPERIMENT B (SINE)

TABLE VI
SPECIFICATION OF BENCHMARKS DATA SETS FOR EXPERIMENTS IN [8]

��� yielded a smaller network structure (21.46% fewer categories), but
with only 0.06% drop in accuracy, as compared with those of �� � �.
Note that the �-insensitive loss function is equivalent to the Laplacian
loss function when �� � � [18]. With �� � ���, the classification
accuracy rate dropped by 1.17%, but with 50.57% reduction in network
size. These results indicate that there is a tradeoff between network
accuracy (performance) and network size (compression). This tradeoff
is observed in other ART-based networks [15], [22], [23], [27], [28] as
well as other neural network models [4], [26]. Note that for simplicity,
�� was set to 0.3 for all other experiments.

B. SinE

In this experiment, GART was used to approximate a rapidly
changing continuous function known as “SinE” [7], i.e.,

� � ��� ���	���
�� ��	����� (11)

A total of 50 runs were conducted with 3000 training samples in each
run. The samples comprised randomly generated � values (between
0 and 10), with the respective � values. Another 1500 test samples
were generated using the same procedure. The results of GART and
OSELM were compared with those of GAPRBF, MRAN, RANEKF,
RAN, and support vector regression (SVR), as summarized in Table V.
The OSELM result was obtained using 200 RBF neurons and 400 sam-
ples for initial training. As shown in Table V, GART produced smaller
RMSE values for both training and test sets as compared with those of
other models.

C. Experiments in [9]

Seven benchmark experiments, as presented in [9], i.e., Auto-MPG
(Mpg), Abalone (Aba), California Housing (Cal) (regression), Image
Segmentation (Seg), Satellite Image (Sat), DNA (classification), and
Mackey Glass (Mac) (time series prediction), were evaluated. Table VI
summarizes the specifications of these problems. Further details of the
problems and the data sets used were explained in [9].

The results of regression problems are given in Table VII. From the
three problems, GART achieved the best test results in Auto-MPG and
California Housing, and the best training results in all problems. The

TABLE VII
COMPARISON AMONG GART, OSELM, AND OTHER SEQUENTIAL LEARNING

ALGORITHMS FOR REGRESSION PROBLEMS

TABLE VIII
COMPARISON BETWEEN GART, OSELM, AND OTHER SEQUENTIAL LEARNING

ALGORITHMS FOR CLASSIFICATION PROBLEMS

TABLE IX
COMPARISON BETWEEN GART, OSELM, AND OTHER SEQUENTIAL LEARNING

ALGORITHMS FOR MACKEY GLASS TIME SERIES PREDICTION PROBLEM

classification results are given in Table VIII. Out of the three classifica-
tion problems, GART achieved the best results in both training and test
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sessions for Image Segmentation and Satellite Image. However, GART
did not perform well for the DNA problem. It achieved 100% accuracy
during training, with 1872.2 (average of 50 runs) number of categories.
This implied that GART might be overtrained. This was likely because
the data set has a large number of input attributes, and all of them are
binary values. To further examine the performance of GART, another
DNA experiment, based on 60 attributes as reported in [30] and [31],
was conducted. GART achieved average (of 50 runs) classification rates
of 99.22% and 91.29% for the training and test sets, respectively. The
number of categories created was 904.1 (average of 50 runs).

The results of the Mackey Glass time series prediction problem are
given in Table IX. Comparing with OSELM and other sequential RBF
networks, GART achieved smaller RMSE values in both training and
test sessions.

IV. SUMMARY

An ART-based online learning neural network called GART has
been introduced. The efficiency of GART has been evaluated and com-
pared with those from a variety of online learning models using nine
benchmark experiments. The results show that GART is able to achieve
better performances in seven out of the nine experiments. For future
work, dynamic initialization of the standard deviation of the MGA
modules is to be investigated to improve the robustness of GART.
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